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A Numerical Method Based on the Discretization of
Maxwell Equations in Integral Form

M. ALBANI anxp P. BERNARDI, SENIOR MEMBER, IEEE

Abstract—A method is described for the solution of the electro-
magnetic field inside resonant cavities and waveguides of arbitrary
shape, whether homogeneously or inhomogeneously filled. The
method, suitably programmed for use with a digital computer, is
based on the direct discretization of the Maxwell equations in
integral form. Since the method works with the components of the
electromagnetic field, the numerical solution directly gives the dis-
tributions of the field in the structure, in addition to the resonant
frequencies of cavities or the propagation constants of waveguides.
Some numerical applications of the method are given.

I. INTRODUCTION

Numerous satisfactory numerical methods are available today
for determining the electromagnetic field, both in structures in
which the field can be derived from a single scalar potential, as in the
case of empty guides of arbitrary shape [11-[37], and in more
general structures in which the field has all the components differing
from 0, such as waveguides loaded with axial dieleetrics [41-[9] or
resonant cavities of arbitrary shape, whether empty or loaded with
dielectric regions [8]. Comparative discussions of these methods
[23, £3], [7] show that “no single solution method has proved to be
best for all requirements that might be imposed.”’

In this short paper, a method based on the direct discretization
of the Maxwell equations in integral form is presented. The method
does not require the introduction of auxiliary potential functions or
the use of particular analytical procedures to formulate the problem
in a computationally convenient form, and it therefore represents
a very direct approach for the solution of a large class of structures.
Moreover, the method presented allows the solution, with unified
treatment, of both two- and three-dimensional structures.

II. DISCRETIZATION OF MAXWELL’S EQUATIONS
IN INTEGRAL FORM

Considering a source-free region and assuming exp [ jwt] as time
dependence, Maxwell’s equations in integral form may be written

“}gt-Eds —/n-HdS
8 8

fft-H ds ——/e,(P)n-E as
8 8
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where ¢.(P) is the permittivity of the medium in the structure. In
(1) the lengths and the electric field are normalized to 1/w (ues)V?
and j(uo/e )2, respectively; that is,

(2a)
(2b)

§ = (moeo ) 128
E = —jE/(uo/er)\

where 5 and E are the effective length and electric field.

A. Cavities of Arbitrary Shape Inhomogeneously Filled

A cavity of arbitrary shape, bounded by a perfect conductor, and
loaded with an inhomogeneous dielectric medium is considered first.
In order to obtain a finite set of algebraic equations, a finite-differ-
ence procedure of discretization, the cell method [107, [11], is
followed. The method consists of subdividing the cavity into cubic
cells of side h, each assumed homogeneously filled, and considering
the field as a function defined on the cells. Two types of cell may be
congidered : internal and boundary cells (Fig. 1). For all the cells
of the structure, we assume the following hypotheses on the distri-
bution of the electromagnetic field. 1) Inside each cell the components
of the field have constant value. 2) On the interface between two
contiguous cells, the components of the field have a value equal to
the mean of the values in the two cells considered.

In this way, the continuous electromagnetic field is replaced by a
set of discrete values. By applying (1a) and (1b) to each cell of the
structure, we obtain a. finite system of simultaneous algebraic equa-
tions. Assuming a rectangular coordinates set (x,y,z), for the
generic internal cell we have

2hH, + E,(z — h) — E,(z4+h) + E.(y +h) —E.(y —h) =0
(3a)

2hE, + ¢ UH,(z—h) — Hy(z +h) + H(y + h) — H.(y — k)] = 0
(3b)

where Hstandsfor H.(z,y,2) and E,(z — k) stands for E,(z,y,2 — k).

The other four equations are obtained with two successive per-
mutations of the coordinate index in (3a) and (3b). For each in-
ternal cell, six equations analogous to the preceding ones may be
written; the only point to be noted is that the value of ¢ must be
that of the medium filling the cell. At the boundary cells the electric
field is assumed to be 0, while the magnetic field is assumed to be
different from 0 because of the surface currents J; on the boundary,
which have not been taken into account in (1). With these hypoth-
eses, from (1a) we obtain for the boundary cell @ of Fig. 1:

OhH,q = 0 (4a)
2hH,q — E.p = 0 (4b)
2hH .o — E,p = 0. | (de)

Applying (3) and (4) to all the cells of the structure, we obtain a
homogeneous system of equations that can be expressed as a matrix
eigenvalue problem:

(A — 2hI)z = 0 (5)

where A has not more than four nonzero elements for each row.
Because of the high number of equations necessary to obtain the

field distribution with a fair degree of approximation, the eigenvalue

problem can be solved numerically only with iterative methods [17].
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Cross section of a cavity of arbitrary shape. S is the cavity
boundary, P an internal cell,  a boundary cell.

Fig. 1.
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However, the solution of (5) by iterative methods is not easy in
view of the particular structure of the matrix A [10]. In fact, this
matrix has all zeros on the main diagonal and, moreover, it has pairs
of equal and opposite eigenvalues. It is therefore advisable to
_reformulate the problem in such a way as to obtain an eigenvalue
problem again, but relative to a new matrix having a structure more
suitable for the use of iterative methods. The procedure consists in
eliminating from (5) the components of the magnetic field, obtaining
a system of equations having as unknowns only the components of
the electric field in the internal cells of the structure. In particular,
for each cell we obtain

(42 — de By + & [Ey(z — 2h) — Eo(x — hiz — h)
+ Bz +hz—h) + Bz + 2h) + E.(x — hz + k)
—E,(x+hz-+h) —E,(z+hy+h)+E(z—hy+h)
+ By +2h) + By(x +h,y — ) — Ey(x — by — h)
+ E.(y —2h) =0 (6)

the remaining two equations being obtained with two successive
permutations of the coordinate index.

Applying (6) to all internal cells, with due regard to the con-
dition E = 0 on the boundary cells, a matrix eigenvalue problem is
obtained:

(B — 4kD)z = 0. )

Matrix B is less sparse than A, since up to 13 elements may be differ-
ent from 0 in each row, but the dimensions of B are less than half
those of A. Moreover, it is to be noted that all the elements of the
main diagonal of B are different from 0. Another advantage of (7),
compared with (5), is found in the cases in which the eigenvalues
of A are all real as, for example, in the case of a cavity homogeneously
filled with a lossless dielectric. In such a case, B is positive semi-
definite, and it is therefore particularly easy to solve the eigenvalue
problem by iterative methods. In conclusion, (7) is adopted as a
basis for the solution of inhomogeneously filled cavities of arbitrary
shape: the eigenvalues give, through (2a), the resonant frequencies
and the eigenvectors give the relative distributions of the electric
field.

The simplicity of the method discussed lies in the fact that (6)
is directly applicable by assigning the appropriate permittivity to
each cell, without taking account of the conditions of continuity of
the tangential components at the interface between different media.
Also, for the boundary conditions no problem arises, since in all the
boundary cells we can put directly E = 0, and (6) is not applied.

B. Dielectric Loaded Cylindrical Waveguides

We consider a waveguide section of length £, subdivided into cubic
cells, each homogeneously filled. A space dependence exp (—k.2),
where z is the longitudinal axis of the guide, is assumed.

In the transverse zy plane, the same hypotheses on the distribu-
tion of the electromagnetic field as in Section I are advanced.
Following the procedure described in Section I and taking account
of the exponential dependence on z, for the generic internal cell we
derive six equations for the components of the field. As in the case
of the eavities, it is good to eliminate the magnetic field components,
obtaining three equations in the electric field components:

[4h* + &1 (4k2h2 — 2)]E; + 26 7kA[E.(x + k) — E.(x — h)]

+ & '[E.(y +2h) + E.(y — 2h) — Ey(x +hy + 1)

+Eyj(z —hy+h)+E(x+hy—h)—E (z—hy—h)]

=0 (8a)

(4 + &1 (4k2h2 — 2)1E, + 26" %ALE.(y + k) — E.(y — k)]

+ & [EBy(x — 2h) + By(x + 2h) — Bo(@ — hyy — h)

+E.(x — hy +h) + Ee(x +hy —h) — E(z+hy+h)]

=0 (8b)
(42 — 46 )E, + 2k A Ey(x + h) — Bo(x — h)

+E,(y +h) — E,(y — h)] + & [ E(y — 2R)
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Equations (8a)—(8c) are evaluated at each internal cell, with the
condition E = 0 at the boundary cells. A set of simultaneous equa-
tions is obtained that may be reduced to an eigenvalue problem by
putting

k.h = constant. (9)
With this position, the matrix eigenvalue problem may be written
(C—4rl)x =0 (10)

where the elements of the matrix C are independent of .

The eigenvalues of C give the frequencies of the waveguide modes
corresponding to the value of the propagation constant given by
(9); the relative distributions of E are given directly by the eigen-
vectors. In this way it is also possible to obtain the dispersion
curves of the various modes by solving (10) for various values of
k.h. In particular, by putting k.h = 0, the cutoff eigenvalues h, can
be obtained, as well as the relative field distributions. It may be
noted that with the proposed method, the eigenvalue problem (10)
is relative to a matrix C that, for homogeneously loaded guides, is
always symmetrie, for both TE and TM modes. As is known, this
does not occur for TE modes when using the finite-difference method,
unless a variational formulation is followed. Moreover, the method
proposed gives, for any structure, a matrix eigenvalue problem in
standard form, while, for instance, the conventional finite-element
method [6] leads to a matrix eigenvalue problem in general form.

It is interesting to derive directly from (8) some well-known prop-
erties of waveguides as, for instance: in a uniform waveguide the
transverse distribution of the field is independent of the propagation
constant. Let us refer, for example, to TM modes. Putting k., = 0,
the eigenvalue problem is expressed by

(D — 4h2l)x = 0. (11)
For k. 5% 0, on the other hand, we have
[D— 421 + &% 2)Jx = 0. (12)

Since in (11) and (12) the matrix D is the same, the eigenvectors
(and hence the field distributions) do not vary with k. Moreover,
from (11) and (12)

he = h2(1 + ¢ k2) (13)
which represents the well-known dispersion equation for uniform
waveguides. On the contrary, for inhomogeneously loaded wave-
guides, from (10) we obtain a group of eigenvectors that is different
for each value of k.. This means that the distribution of the field for
a given mode does not depend only on the geometry of the structure
but also on the value of k.. ’

II1. COMPUTED RESULTS

A. General Remarks

Two general programs have been written to analyze dielectric
loaded waveguides and cavities by the proposed method. The
programs require as input the number and the coordinates of the
cells and the value of the permittivity on each cell for the case of
cavities, while for the case of waveguides it is necessary to give also
the desired value of the propagation constant. In the numerical
computation, account has been taken of the fact that the resulting
set of equations consists of independent groups of equations. This
means that in order to determine the electromagnetic field in a given
structure, it is sufficient to solve an eigenvalue problem for a matrix
considerably smaller than the initial one. For example, in [127] it is
shown that for a resonator subdivided into 75 internal cells it is
sufficient to solve an eigenvalue problem of order 20 instead of the
initial one of order 225.

B. Results

1) Uniform Waveguides: For TM waves the eigenvalue proklem
obtained by (8) with k., = 0is identical to that obtained by applying
the finite-difference method to the Helmholtz equation for the scalar
potential ¢ = E, [13], provided that the mesh length is 2h. The
results obtained are therefore equal to those in [13] and [14]. It is
more interesting to examine the solutions relative to TE waves. In
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fact, (8) operates on the transverse E-field components instead of on
the longitudinal H, component, as in the finite-difference method.
Of course, the relative boundary conditions are also posed in a differ-

" ent manner. Table I shows the results obtained for an empty rec-
tangular guide for the dominant mode, for a TE higher order mode and
for a TE;; mode. It may be noted that the error varies with 4 in the
same way as in the finite-difference method [13].

2) Inhomogeneously Loaded Waveguides: In this case, the eigen-
values can be obtained by (8) with assigned values of k.a (k. =
@,1;8.). As examples, the structures of Figs. 2-4 have been solved.
For the structure of Fig. 2, the results for the dominant mode are
shown in Table II. The assomated electric field distributions are
also shown in Fig. 2. Tt may be noted that in this case, as k/a de-
creases, the error decreases about linearly with k. This result may be
used, as already done for empty guides [13], for computing extrap-
olated eigenvalues. For the structure of Fig. 3, in which there are
material discontinuities in two dimensions, the results are given in
Table 111 and are compared with those obtained by Schlosser and
Uriger [157]. The structure of Fig. 4, consisting of a square waveguide
loaded with a-dielectric rod, has been chosen as an example of the
application of theé method to a structure in. which the material
boundary does not consist of parts of straight lines; the results are
compared, in Table IV, with those obtained by Bates and Ng [9].
It may be noted that with a mesh of 20 X 20 cells, corresponding to
261 equatlons the results are almost coincident with those given in
£9J. ,

In the above examples the numerical computation has been
carried out starting from the general equations (8a)—(8¢) without

TABLE 1
EmprY RECTANGULAR WAVEGUIDE: TE Mopzs

. ¥ode' h/a Computed k a Error, % | Error Tependence
o 1/18 31251 | 0.5 . 2
10 1/36 3.1376 0.13 =h
true k & = 3.1416 1/12 3.1406 0.03 )
- /18 9.0000 3.51 2
30 1/36 9.3175 1.14 | ah
true k a = 9.4248 1/12 9.3979 0.29
— o 1/8 51962 .25
L (PR=23) |, 5.5439 2.11 =n?
true ks « 5.6637 1/24 546334 0.53
TABLE 11
Wavecuie N Fie. 2: Dominant TE Mobe
f.a | b/a :r:e kot Computed ka Error, % | Error Computer
o = ajjeta ) ° Dependence| Time
1/12 " 1.1828 10.81
1/36 " 1.0239 - 4408 208 .
° 1/108 1.0674 1.0817 1.34 ~ b '
1/324 1.0630 - 0.41 < 608
112 1.3744 9.84
1/36 1.2017 T - 3.96 < 208
2 1/108 | 11 1.2674 1.29 =~ b
1/324 1.2470 - 0.34 < 608
1/12 | 1.7807 7.9
1/36 . " 1.5991 -~ 3.74 £ 208
¢ 1/108 1.6613 1.6810 1.19 =k
1/324 1.6560 - 0.32 < 603
TABLE III
WaveGUIDE 1N Fia. 3: DomiNnant MobE
Computed Schlosser and Unger Computer
B.a b/a ka 'koa : Error, £ |- Time
1/10 1,98 o 6.6 208
1 1/[20 2,05 2.12 3.3 <60s
. 1/10 2.1 6.2 2208
2 | 1720 2.18 2.25 3.1 £60s
TABLE 1V

WaveEGUDE IN Fia. 4: DominanT TE Mobk AT CUTOFF

afa Computed Batgu and Ng keoa Computer
k.2 Measured | Computed Time
0.0 2.936 2.865 2.958 < 608
0.206 2.982- 2.904 2.982 < 608

“ Note: h/a = 1/20.

Ey
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z d t l d
a
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Fig. E-field distribution for the dommant mode in the considered

gque Lines denote theoretical curves, dots denote computed values.
& = 16,1/a = 1/4 b/a = 4/9.

Fig. 3.

Fig. 4.

-

t

Rectangular waveguide with insert at centel} of bottom wall.

e =6,t/a =1/2,b/a = 3/5, s/a

Square waveguide loade% Irgtlah dielectric rod. &« = 2.30, b/a =
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taking any advantage of the particular symmetries. For example,
in the case of Table IV, since the computation is carried out at cutoff,
we could have obtained the TE modes by putting E. = 0 directly
in (8), thus considerably reducing the computer time. Therefore,
with the same time shown in Table IV, we can calculate points of
the dispersion curves for hybrid modes at any frequency. In Table
II, where account has been taken of the existence of TE zero-order
modes, the computer time is much shorter.

TFinally, we considered the structure studied by Franceschetti [16]
consisting of a rectangular guide completely filled with an inhomo-
geneous dielectric whose permittivity is e(z) = 5exp (—1.61z/a)
(a is the larger dimension of the guide). The results are shown in
Table V and Fig. 5.

3) Homogeneous Cavities: By applying (6) to the case of a rec-
tangular cavity, the results shown in Table VI are obtained. As may
be seen, even with a moderate number of equations the resonant
frequencies of the first modes are obtained with errors smaller
than 1 percent.

4) Inhomogeneously Loaded Cavities: As numerical examples we
considered: a) the cavities obtained from the waveguides in Figs. 2
and 3; and b) the cavity of Fig. 6.

The structures in Figs. 2 and 3, because of their cylindrical sym-
metry, may be solved either by applying (8) of the waveguides after
assuming Bk = mah/c (m =1,2,+++), or by directly applying
(6) of the cavities. For these structures both methods have been
applied. For cavities of arbitrary shape, on the other hand, like
that shown in Fig. 6, only (6) can be applied, in view of the absence
of any symmetry.

The results given in Table VII show the following. 1) For cavities
with cylindrical symmetry, it is advisable to use (8) instead of (6).
2) The errors obtained via (6) are of the same order of magnitude

TABLE V

RecraNnauLar Gumme CoMpLETELY FILLED WITH INHOMOGENEOUS
DieLectric: DoMiNaANT TE MobE

. N /a Computed Franceschetti Computer
Bza k8 koa Time
1/40 | 6.276
10.209 | 1/60 6.280 6.283 £ 20s
1/100 | 6.282
Ey / Eymax
1+
.9
8
7
s
5 r
4+
3+
2+
A
1
o a x
Fig. 5. E-field distribution for dominant mode in waveguide in Table
(B.a = 10.209). Line denotes Franceschetti curve, dots denote
computed values.
TABLE VI
Eumpry REcrancuLar ResonaTor (a,b,e)
—Tomputed Humber of
Mode h/n ko Error, $ Equations
iy 10 1/12 5.5439 2.11 121
True resonant freq.
. 0. 1
kon = 5-6836 1/24 5.6335 53 322
TEj0; 1/12 6.7560 3.83 121
True k.a = 1.0249 1/24 6.9571 0.97 1322
™10 + o1l 1712 7.5558 3.80 121
True kea = 7.8540 1/24 7.7784 0496 1322

Note: b/a = 2/3, ¢/a = 1/2.
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Fig. 6. Rectangular cavity with dielectric insert. e
c/a = 5/9, u/a = 2/9,s/a = 5/18,t/a

2.05, b/a = 4/9.
1/2.

TABLE VII
INHOMOGENEOUSLY LoApED RESONATORS: DoMINANT MoDE
Resonator Resonant Freguency kol Brror, % *%giic—r

Fig.2 True kea ( TEjqmode ) 2.583 -
Resonator length o/a=1/10 | koa computed via (8)  2.429 6.0 < 108
h/a = 1/20 ke computed via (6) 2.383 7.7 < 608
Mg. ] Schlosser& Unger kca 2473 -
Resonator length c/a=4/5 | k,a computed via (8) 2.59 5.1 < 108
h/a = 1/10 ke computed via (6) 2.56 6.2 < 60a
Fig.6 Measured k.a 5422 -
h/a = 1/18 Computed k.a 555 6.3 <. 60m

for structures inhomogeneous in one direction only (Fig. 2), in
two directions (Fig. 3), and in all three directions (Fig. 6).

IV. CONCLUSIONS

The method presented may be applied to a wide class of struc-
tures, such as cylindrical waveguides and cavities of arbitrary
shape, even if inhomogeneously filled. Although the electromagnetic
field has been approximated with constant values in the cells, the
method gives, with good approximation, both the field distributions
and the resonant frequencies or the propagation constants with a
moderate number of equations. The complexity of the numerical
solution and the computing time depend only on the number of
cells into which the structure is subdivided and are not influenced
by the presence of one or more dielectrics inside it.
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Low-Noise Mixer in Oversized Microstrip for 5-mm Band

PAUL J. MEIER

Abstract—This short paper summarizes the design and per-
formarice of a low-noise 5-mm mixer constructed in oversized
microstrip—a new type of transmission line which is superior to
microstrip at millimeter wavelengths. Including a 5-dB IF con-
tribution, the measured noise figure was 9-10.5 dB over a wide
range of LO frequencies and drive levels.

Although standard microstrip techniques can be applied to milli-
meter components [1]-[3], several problems arise. These problems
include critical tolerances, fragile substrates, thin conductor strips
which are not completely compatible with hybrid devices, and
difficulty ih obtaining a simple transition to conventional waveguide.
Mounting an integrated circuit between two waveguides {47, can
alleviate these problems. This short paper discusses the design and
performance of a low-noise wide-band millimeter mixer constructed
in a new IC medium called oversized microstrip [5]. .

Normally, the thickness of a microstrip substrate is held to a
small fraction of a guided quarter wavelength to restrict the radiation
loss. If; however, we intentionally set the substrate thickness at, a
quarter wavelength, an efficient radiator may be printed on' the
ungrounded surface of the substrate. When mounted in a waveguide,
as shown in Fig. 1, this radiator will couple to the TE; waveguide
mode and all the power may be delivered to an unpedance—matched
load (suth as a-mixer diode) provided that no energy is reradiated
in some other mode such as the crossed TEy mode. For this reason,
the air-filled portion of the waveguide should .not support the TEy
mode, which is automatically acecomplished when a standard wave-
guide is operated within its normal frequency range. Moreover, the
dielectric-filled portion of the waveguide should not support the
TEq mode, in order to prevent resonances within the substrate.
This may be accomphshed by reducing the waveguide size within
the dielectric region, or by printing the radiator on a thin substrate
which is suspended above the ground plane.

Fig. 1 illustrates the essential features of a mixer constructed in
oversized microstrip. Both' the local oscillator and the signal are
coupled from the waveguide by a monopole, whose length and shape
are selected to provide a wide-band impedance match to the diode.
In thé intended application, both the.local oscillator and signal
will be cloge in frequency, and fed to an array of mixers by quasi-
optical techniques. (A small local-oscillator radiator illuminates
the mixer array which is located in the focal region of a large spherical
reflector.) Laboratory testing of each miger is performed, external
to the array, by injecting the loeal oscillator through a diréctional
coupler. In each mixer, the diode is returned to ground at RF and
de by a direct connection to the waveguide housing. Bias is injected,
and the IF signal is extracted through an RF-blocking network,
which does ot couple to the TE;; mode.

Fig. 2 shows an experimental model of a mixer constructed in
oversized microstrip. The monopole diode-mounting lands, and RF-
blockmg network are all printed on a Mylar gasket whose thlckness
is 0.005 in. The conductor patterns were formed by photoetching
copper and nichrome layers vacuum deposited on the Mylar,
followed by a protective gold flash. The gasket is then sandwiched
between two UG-385/U flanges, one of which is the input to a
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Mixer in oversized microstrip.

Fig. 1.

Fig. 2.

Experimental mixer model.

short-circuit termination. The other flange has been modified to
accept a pair of rectangular choke grooves and a radial channel for
the bias port. Each choke groove is a quarter wave deep and spaced
a quarter wave from the main WR-15 waveguide. The choke was
evaluated separately, by measuring the insertion loss through the
main waveguide with an unmetallized 0.005-in Mylar gasket in
place. The loss measured less than 0.2 dB across the 55-63-GHz
band. A radial charnel was next milled in the special flange to
accommodate the bias liie and RF-blocking network. This channel
has a negligible effect on the insertion loss of the system.

The preliminary steps in' the design of the oversized microstrip
mixer included the selection of the optimum type of diode, and the
impedance matching of the monopole to ‘this diode. Optimum
performance was obtained with preproduction samples of an ad-
vanced GaAs beam-lead Schottky-barrier diode. The diodes were
developed by the British General Electric Company [37, and are
expected to become commercially available in the near future.

Fig. 3illustrates an advanced version of the oversized microstrip
mixer, in which the imonopole has been shortened and moved off
axis to improve the impedance match. This mount also features a
shielded miniature (SMA) output connector, which accommo-
dates the high IF typically required in single-ended mixers. The
Mylar was replaced by Kapton, as the latter can tolerate higher
temperatures and, as such, is better suited to standard metallization
ahd bonding techniques. With a forward bias of 0.6 V and 1.0 mW
of drive, the VSWR of the final desigh was 2.0 or better across the
band from 59 to 63 GHz. It is believed that further optimization of
the shape and location of the monopole could result in still wider
bandwidths. (Alternatively, enhanced performance across a narrow
band, through suitable termination of the image frequency [4], is
possible with a higher monopole Q.) .

After a satisfactory impedance match had been obtained across a
4-GHz band, the noise figure of the mixer was measured. Medsure-
ments were performed by the standard Y-factor method with the
aid of a noise tube calibrated against the AIL millimeter hot load
[6]..An IF of 1.5 GHz was selected, as this frequency offers a good
compromise between the degradation introduced by LO noise and



