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A Numerical Method Based on the Discretization of

Maxwell Equations in Integral Form

M. ALBANI AND P. BERNARDI, SENIOR MEMBER, IEEE

AZrstract-A method is described for the solution of the electro-

magnetic field inside resonant cavities and waveguides of arbitrary

shape, whether homogeneously or inhomogeneously filled. The

method, suitably programmed for use with a digital computer, is

based on the direct discxetization of the Maxwell equations in

integral form. Since the method works with the components of the

electromagnetic field, the numerical solution directly gives the dis-

tributions of the field in the structure, in addition to the resonant

frequencies of cavities or the propagation constants of wavegnides.

Some numerical applications of the method are given.

I. INTRODUCTION

Numerous satisfactory numerical methods are available today

for determining the electromagnetic field, both in structures in
which the field can be derived from a single scalar potential, as in the

case of empty guides of arbitrary shape [1 }[3], and in more

general structures in which the field has all the components differing
from O, such as waveguides loaded with axial dielectrics [4]-[9] or

resonant cavities of arbitrary shape, whether empty or loaded with
dielectric regions [8]. Comparative discussions of these methods
[2], [3], [7] show that “no single solution method has proved to be
best for all requirements that might be imposed.”

In this short pape~, a method based on the direct discretization
of the Maxwell equations in integral form is presented. The method
does not require the introduction of auxiliary potential functions or

the use of particular analytical procedures to formulate the problem
in a computation ally convenient form, and it therefore represents
a very direct approach for the solution of a large class of structures.

Moreover, the method presented allows the solution, with unified

treatment, of both two- and three-dimensional structures.

II. DR3CRETIZATION OF MAXWELL’S EQUATIONS

IN INTEGRAL FORM

Considering a source-free region and assuming exp [ jcd] as time
dependence, Maxwell’s equations in integral form may be written

f
t.E ds = – Jn.HdS (la)

* s

(lb)
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where e,(P) ie the permittivity of the medium in the structure. In
(1) the lengths and the electric field are normalized to l/a (~OCO)llZ
and j (pO/~ ) 1[2, respectively; that is,

s = @(#oeo)% (2a)

E = –j~/ (w/eo)l/2 (ib)

where ~ and ~ are the effective length and electric field.

A. Cavities of Arbitrary Shape Inhomogeneoasly Filled

A cavity of arbitrary shape, bounded by a perfect conductor, and

loaded with an inhomogeneous dielectric medium ie considered first.
In order to obtain a finite set of algebraic equations, a finite-differ-

ence procedure of discretization, the cell method [1 O], [11], is
followed. The method consiete of subdividing the cavity into cubic

cells of side h, each assumed homogeneously filled, and considering

the field as a function defined on the cells. Two types of cell may be

considered: internal and boundary cells (Fig. 1). For all the cells
of the structure, we assume the following hypotheses on the d~tri-

bution of the electromagnetic field. 1 ) Inside each cell the components
of the field have conetant value. 2 ) On the interface between two

contiguous cells, the component of the field have a value equal to
the mean of the valuee in the two cells considered.

In this way, the continuous electromagnetic field is replaced by a
set of discrete values. By applying (la) and (lb) to each cell of the
structure, we obtain a. finite eystem of eirmdtaneous algebraic equa-
tions. Assuming a rectangular coordinates set (x, ~, z), for the

generic internal cell we have

2hHI +EU(Z – h) ‘.f?U(Z +h) +E,(y +h) – Ez(y – h) = O

(3a)

2hEz + ●,-l[HV(Z- h) – &(Z + h) + Hz(Y + h) – Hz(y – h)] = O

(3b)

where H. stands for H=(z,y,z) and E,(z — h) stands for EU(z,y,z — h).
The other four equations are obtained with two successive per-

mutations of the coordinate index in (3a) and (3b ). For each in-
ternal cell, six equations analogous to the preceding ones may be
written; the only point to be noted is that the value of c. must be

that of the medium filling the cell. At the boundary cells the electric
field is aseumed to be O, while the magnetic field is assumed to be

different from O because of the surface currents J. on the boundary,

which have not been taken into account in (1). With theee hypoth-
eses, from (la) we obtain for the boundary cell Q of Fig. 1:

2hH=Q = O (4a)

2hHUQ – E.P = O (4b)

2hH,Q – EUP = O. I (4C)

Applying (3) and (4) to all the cells of the structure, we obtain a
homogeneous system of equations that can be expressed as a matrix

eigenvalue problem:

(A – 2hZ)z = O (5)

where A has not more than four nonzero elements for each row.
Because of the high number of equations necessary to obtain the

field d~tribution with a fair degree of approximation, the eigenvalue
problem can be solved numerically only with iterative methods [1].

Fig. 1.
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Cross section of a cavity of arbitrary shape. S is
boundary, P an internal cell, Q a boundary cell.

the cavity
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However, the solution of (5) by iterative methods is not easy in

view of the particular structure of the matrix A [10]. In fact, thk
matrix has all zeros on the main diagonal and, moreover, it has pairs

of equal and opposite eigenvalues. It is therefore advisable to
reformulate the problem in such a way as to obtain an eigenvalue

problem again, but relative to a new matrix having a structure more

suitable for the use of iterative methods. The procedure consists in

elirnkatingfrorn (5) thecomponenteof themagnetic field, obtaining
a system of equations having as unknowns only the components of

theelectric field intheinternal cells of the structure. In particular,
for each cell we obtain

(4h’ – 46,-’)E. + .r-’[Ez(z – 2h) – E,(Z – h,z – h)

+-ES(Z +h,z – h) +Ez(z +Zh) +~.(~ – @ +~)

–E$(z+h,z+h) –E. (z+h,y+h) +E. (z–ls,v+h)

+E=(y+2h) +Ev(z+h, v–h) –E. (x–h,v–h)

+E#(y–2h) = o (6)

the remaining two equations being obtained with two successive

permutations of the coordinate index.
Applying (6) to all internal cells, with due regard to the con-

dition E = O on the boundary cells, a matrix eigenvalue problem is

obtained:

(1? – 4h’I)z = o. (7)

Matrix B is less sparse than A, since up to 13 elements maybe differ-

ent from O in each row, but the dimensions of B are less than half
those of A. Moreover, it is to be noted that all the elements of the
main diagonal of B are different from O. Another advantage of (7),
compared with (5), is found in the cases in which the eigenvalues
of A are all real as, for example, in the case of a cavity homogeneously
filled with a lossless dielectric. In such a case, B is positive semi-

definite, and it is therefore particularly easy to solve the eigenvalue

problem by iterative methods. In conclusion, (7) is adopted as a

basis for the solution of inhomogeneously filled cavities of arbitrary

shape: the eigenvalues give, through (2a), the resonant frequencies
and the eigenvectors give the relative distributions of the electric
field.

The simplicity of the method discussed lies in the fact that (6)
is directly applicable by assigning the appropriate permittivity to
each cell, without taking account of the conditions of continuity of
the tangential components at the interface between different media.
Aleo, for the boundary conditions no problem arises, since in all the

boundary cells we can put directly E = O, and (6) is not applied.

B. Dielectric Loaded Cylindrical Waveguides

We consider a waveguide section of length h, subdivided into cubic

cells, each homogeneously filled. A space dependence exp ( – k,z ),

where z is the longitudinal axis of the guide, is assumed.
In the transverse xy plane, the same hypotheses on the distribu-

tion of the electromagnetic field as in Section I are advanced.
Following the procedure described in Section I and taking account

of the exponential dependence on z, for the generic internal cell we
derive six equations for the components of the field. As in the case
of the cavities, it is good to eliminate the magnetic field components,
obtaining three equations in the electric field components:

[4h’ +,,-’ (4kz2h’ – 2)]Ez + 2e,-%Js[E,(z + h) – E.(z – h)]

+ ,,-’[llz(y + 2h) +E. (y – 2h) – E,(.z + h,’y + h)

+Ev(z – h,y +h) +Ev(z +h,y – h) – Eti(x – h,y – ~)1

‘=0 (8a)

[ii’ +,,-’ (4h%’ – 2)]E. + 2e,-’k2h[Ea(v + h) – ~z(Y – h)]

+ ,,-’[EV(Z – 2h) +EV(Z +2h) – E.(z – h,y – h)

+.U(Z – h,y +h) +E.(z +h,l/ – h) – E.(z +~,lj +h)l

=0 (8b)

(4h’ – 4,,-’)E, + 2e,-’k,h[Ez(z + h) – Ez(z – h)

+Ev(y + h) – E.(Y – h)] + e,-’[E.(~ – 2h)

+Ez(Y +2h) +Ez(z +2h) +-E,(z – 2h)] = O. (8c)
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Equations (8a)– (8c ) are evaluated at each internal cell, with the

condition E = O at the boundary cells. A set of simultaneous eW-

tions is obtained that may be r~duced to an eigenvalue problem by

putting

kgh = constant. (9)

With this position, the matrix eigenvalue problem may be written

(C – 4h’I)x = O (lo)

where the elements of the matrix C are independent of h,.
The eigenvalues of C give the frequencies of the waveguide modes

corresponding to the value of the propagation constant given by

(9); the relative distributions of E are given directly by the eigen-
vectors. In this way it is also possible to obtain the dispersion
curves of the various modes by solving (10) for various values of
k,h. In particular, by putting k,h = O, the cutoff eigenvalues h, can
be obtained, as well as the relative field distributions. It may be
noted that with the proposed method, the eigenvalue problem (10)

is relative to a matrix C that, for homogeneously loaded guides, is
always symmetric, for both TE and TM modes. As is known, this

does not occur for TE modes when using the finite-difference method,

unless a variational formulation k followed. Moreover, the method
proposed gives, for any structure, a matrix eigenvalue problem in

standard form, while, for instance, the conventional finite-element

method [6] leads to a matrix eigenvalue problem in general form.
It is interesting to derive directly from (8) some well-known prop-

erties of waveguides as, for instance: in a uniform waveguide the
transverse distribution of the field is independent of the propagation
constant. Let us refer, for example, to TM modes. Putting k, = O,
the eigenvalue problem is expressed by

(D – 4hC’I)rs = O. (11)

For k, # O, on the other hand, we have

[D – 4h’(1 + ,,-%,’)I]z = O. (12)

Since in (11) and (12) the matrix D is the same, the eigenvectors
(and hence the field distributions ) do not vary with k,. Moreover,

from (11) and (12)

hC2 = h2 (1 + ,,3-,2) (13)

which represent the well-known dispersion equation for uniform
waveguides. On the contrary, for inhomogeneously loaded wave-
guides, from (10 ) we obtain a group of eigenvectors that is different
for each value of k,. This means that the distribution of the field for
a given mode does not depend only on the geometry of the structure

but also on the value of k,:

III. COMPUTED RESULTS

A. General Remarks

Two general programs have been written to analyze dielectric
loaded waveguides and cavities by the proposed method. The
programs require as input the number and the coordinates of the

cells and the value of the permittivity on each cell for the case of
cavities, while for the case of waveguides it is necessary to give also

the desired value of the propagation constant. In the numerical
computation, account has been taken of the fact that the resulting

set of equations consists of independent groups of equations. This
means that in order to determine the electromagnetic field in a given

structure, it is sufficient to solve an eigenvalue problem for a matrix
considerably smaller than the initial one. For example, in [12] it is

shown that for a resonator subdivided into 75 internal cells it is
sufficient to solve an eigenvalue problem of order 20 instead of the
initial one of order 225.

B. Results

1 ) Uniform Waveguides: For TM waves the eigenvalue problem
obtained by (8) with k. = O is identical to that obtained by applying
the finite-difference method to the Helmholtz equation for the scalar
potential @ = E, [13], provided that the mesh length is 2h. The

results obtained are therefore equal to those in [13] and [14]. l[t is
more interesting to examine the solutions relative to TE waves. In
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fact, (8)operates onthetransverse E-field components instead of on

the longitudinal H. component, as in the finite-difference method.
Of course, the relative boundary conditions are also posed in a differ-

ent manner. Table I shows the results obtained for an empty re~

tangular guide for the dominant mode, for a TE higher order mode and
for a TE,I mode. If, maybe noted that the error varies with h in the
same wayasin the finite-dlfferenc emethod [13].

2) Inhomogeneously Loaded Waveguides: In this case, the eigen-
values can be obtained by (8) with assigned values of La (k, =

~z+j~a). -4s examples, the structures of Figs. 2–4 have been solved.
For the structure of Fig. 2, the results for the dominant mode are

shown in Table II. The associated electric field distributions are

also shown in Fig. 2. It maybe noted that in this case, as h/a de-

creases, theerror decreases about linearly withh. Thk result maybe
used, as already done for empty guides [13], for computing extrap-

olated eigenvalues. For the structure of Fig. 3, in which there are
material discontinuit.ies in two dimensions, the results are given in

Table III and are compared with those obtained by Schlosser and
Unger [15]. The structure of Fig. 4, consisting of a square waveguide
loaded with a dielectric rod, has been chosen as an example of the

application of the method to a structure in which the material

boundary does not consist of parts of straight lines ; the results are

compared, in Table IV, with those obtained by Bates and Ng [9].
Itmaybe noted that with ameshof20 X20cells, corresponding to

261 equations, theresults are almost coincident with those given in

[91.
in the above examples the numerical computation has been

carried out starting from the general equations (8a)–(8c) without

TABLE I

EMPTY RECTANGULAR WAVEGUIDE: TE MODES

Ibde Va Computed k . Error, $ Fa.rOr Dependence

TEIO
1/1s 3.1257 0.51

1/36 3.1376 0.13 d h2

true k“a - 3.1416 1/72 3.1406 0.03

1/1s 9 .Cooo 4.51

*3O 1/36 9.3175 1.14 > hz

true k c. . 9.424S 1172 ?.3919 0.29
—0

1[6 5.1962 8.25
%1

( bla - 2/3 )
1/12 5.5439 2.11 > h’

true k a - 5.6637 1/24 5.6334 0.53

&a

—

o

2

4

—

TABLE II

WAVEGUIDE IN FIG. 2: DOMINANT TE MODE

h/~
True *

Computed koa Error, $
kon - wfia Srror computer

I&2mnd..m Tim.

l/12 1.W32S 10 .s1

1/36 1.0239
1.0674 - 4.08

1/108
<Zoa ;

1.0817 1.34
~h

1/324 1.0630 - 0.41 <609
1/12 1.3744 9 .al
1/36

1.2513
1.2017 -3.96 < 20s

1/108 1.2674 1.29
zh

l/324 1.2470 - 0.34 L 60a
1/12 1.1807 7.19
1/36

1.6613
1.5991 -3.74 d 209

1/10s 1.6S10 1.19 =h

1/324 1.6560 - 0.32 L 609

T’ARLE III

WAVEGUIDE IN FIG. 3: DOMINANT MODE

~

TABLE IV

VVAVEGUIDE IN FIG. 4: DOMINANT TE MODE AT CUTOFF

V8
cOmmtea Pate- ..d Iig ~~ C.mpter

koa Meatlu*ed
I

cOmptea Time

0.0 2.936 2.86s 2 .95s
0.206 2 .9S2

< 609
2.904 2 .9S2 < 609

E,

1.0

O.a

0.6

0.4

0.2

0

E,

I

.
ix

Fig. 2. E-field distribution for the dominant mode in the considered
guide. Lines denote theoretical curves, dots denote computed values.
e, = ~6, tla = 1/4, b/a = 4/9.

Fig. 3. Rectangular wavegu3de with insert at center of bottom wall.
e, = 6. tla = 1/2, b/a = 3/5, s/a = 2/5.

—
\ /

\

\

\

/
/

/
,/ \

\

Note: h/a = 1/20.
Fig. 4. SqU~e wavegnide loade~ ~~h dielectric rod. c, = SMIO, ~ja =

. .
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taking any advantage of the particular symmetries. For example,
in the caseof Table IV, since the computation is carried out at cutoff,
we could have obtained the TE modes by putting E. = O directly

in (8), thus considerably reducing the computer time. Therefore)
with the same time shown in Table IV, we can calculate points of

thedkpersion curves for hybrid modes at any frequency. In Table
II, where account has been taken of the existence of TE zero-order

modes, the computer time is much shorter.
Finally, we considered the structure studied by Franceschetti [16]

consisting of a rectangular guide completely filled with an inhomo-
geneous dielectric whose permittivity is c,(x) = 5exp (–1.61z/a)

(a is the larger dimension of the guide). The results are shown in
Table V and Fig. 5.

3) Homogeneous Cavities: By applying (6) to the case of a rec-
tangular cavity, the results shown in Table VI are obtained. As may

be seen, even with a moderate number of equations the resonant
frequencies of the first modes are obtained with errors smaller

than 1 percent.
4) Inhomogsneously Loaded Cavities: As numerical examples we

considered: a) the cavities obtained from the waveguides in Figs. 2
and 3; and b) the cavity of Fig. 6.

The structures in Figs. 2 and 3, because of their cylindrical sym-

metry, may be solved either by applying (8) of the waveguides after

assuming &h = m~h/c (m = 1, 2, o.”), or by directly applying

(6) of the cavities. For these structures both methods have been

applied- For caviti~ of ~bitrary shape, on the other hand, like
that shown in Fig. 6, only (6) can be applied, in view of the absence

of any symmetry.

The results given in Table VII show the following. 1 ) For cavities

with cylindrical symmetry, it is advisable to use (8) instead of (6).

2) The errors obtained via (6) are of the same order of magnitude

449

Fig. 6. Rectangular cavity with dielectric insert. e, = 2.05, bla = 4/9.
cla = 5/9, ‘a/a = 2/9, sla = 5/1S, tla = 1/2.

TABLE VII
INHOMOGENtiOT.JSLYLOADEDRESONATORS:DOMINANTMODE,_

Rwo.ator Ramonnnt Frequenos koa Wor, $ f~gu=

FU?.’2 TIW kca ( TEl~~ode ) 2.583 -
Re6mnet0r length e/*.4/10 ha compted via (8) 2.429 6.0 L 10E

hla . 1/20 k-a .omwt.d * (6) 2.383 7.7 L 60s. . .—
r-h?. 3 Sohlosser& Unger i%a 2.73 -

resonator length ./.-4/5 koa oomputed via (8) 2.59 :.: L lea

hja - 1/10 koa oowut.ed via (6) 2.56 . < 60a
—

rig.6 Wasured koa 5.22 -

hle - 1/18 computed kca 5.55 6.3 L 608)

TABLE V
RECTANGULARGUIDE COWmTELY FILmD WITH INEOMOGENEOUS

DIEmCTRIC: DOMINANTTE MODE

I computed Yrance.chetti
h/a

Computer
/3=. k. k.+ Time

I

I1/40 6.276
10.209 1/60 6.280 I 6.283 ILZoe

1 /100 6.282

t
Ey/Ey..x

1.-

.9

.8

.7

.6

.5

.4

.3

.2 -

b
o ● x

Fig. 5. E-field distribution for dominant mode in waveguide in Table
V (~,a = 10.209 ). Line denotes France.qchetti c~ve. dOts denOte
computed valnes.

TABLE VI

EM.VY RECTANGULAR RESONATOR (a,b,c)

Number of
Mode Equati0n8

TMI1o 1/12 5.5439 2.11

Note: b/a = 2/3, c/a = 1/2.

for structures inhomogeneous in one direction only (Fig. 2), in

two directions (Fig. 3), and in all three directions (Fig. 6).

IV. CONCLUSIONS

The method presented may be applied to a wide elms of struc-

tures, such as cylindrical waveguides and cavities of arbitrary
shape, even if inhomogeneously filled. Although the electromagnetic
field has been approximated with constant values in the cells, the

method gives, with good approximation, both the field distributions

and the resonant frequencies or the propagation constants with a

moderate number of equations. The complexity of the numerical

solution and the computing time depend only on the number of
cells into which the structure is subdivided and are not influenced

by the presence of one or more dielectrics inside it.
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Low-Noise Mixer in Oversized Microstrip for 5-mm Band

PAUL J. M131ER

AfWracf-This short paper summarizes the design and per-
forrnarice of a low-noise 5-mm ,@xer constructed in oversized
microstrip-a new type of transmission line which is superior to
microstrip it millimeter wavelengths. Includlng a 5-dB IF con-
tribution, the measured noise figure was 9-10.5 dB over a wide
range of LO frequencies and drive levels.

Although standard microstrip techniques can be applied to mini-
meter components [1]–[3], several problems arise. These problems
include critical tolerances, fragile substrates, thin conductor strips
which are not completely compatible with hybrid devices, and
difficulty in obtaining a simple transition to conventional waveguide.
Mounting an integrated circuit between two waveguides [4], can
alleviate theseproblems. This short paper discussesthe design and
performance of slow-noise wide-band rnlllimeter mixer constructed
in anew ICmedium called oversized microstrip [5].

Normally, the thickness of a microstrip substrate is held to a
small fraction of a guided quarter wavelength to restrict the radiation
loss. If, however, we intentionally set the substrate thickness at, a
quarter wavelength, an efficient radiator may be printed on the
ungrounded surface of the substrate. When mounted in a waveguide,
as shown in Fig. 1, this radiator mill couple to the TE1o waveguide
mode and all thepower maybe delivered to anirnpedance-matched
load (su6has a mixer diode) provided that noenergyi sreradiated

in ~ome other mode such as the croesed TEOI mode. For this reason,
the air-filled portion of the waveguide should. not support the TEOI
mode, which is automatically accomplished when a standard wav6-

guide isoperated within itsnormal frequency range. Moreover, the
dielectric-filled portion of the waveguide should not support the
TE,, mode, in order to prevent resonances within the substrate.
This may be accomplished by reducing the waveguide size within

the dielectric region, or by printing the radiator on a thin substrate

which is suspended above the ground plane.
Fig. 1 illustrates the essential features of a mixer constructed in

oversized microstrip. Both the local oscillator and the signal are

coupled from the waveguide by a monopole, whose length and shape
are selected to provide a wide-band impedance match to the diode.
In,the intended application, both the local oscillator and signal

will be close in frequency, and fed to an array of mixers by qussi-
optical techniques. (A small local-oscillator radiator illuminates
the mixer array which is located in the focal region of a large spherical
reflector. ) Laboratory testing of each mixer is performed, external
to the array, by injecting the local oscillator through a directional
coupler. In each mixer, the diode is returned to ground at RF and
dc by .a direict connection to the waveguide housing. Bias is injected,
and the IF signal is extracted through an RF-blocking network,

which does not couple to the TEIO mode.
Fig. 2 chows an experimental model of a mixer constructed in

oversized microstrip. Themonopole,d iode-mountingl ands, and RF-

blockhg network are all printed on a’ Mylar gasket whose thickness
is 0.005 in. The conductor patterns were formed by photoetching
copper and nichrome layers vacuum deposited cm the ,Mylar,
followed by aprotective gold flash. The gasket is then sandwiched
between two UG-385/U flanges, one of which is the input to a
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Fig. 1. Mixer in oversized microstrip.

Fig. 2. Experimental mixer model.

short-circuit termination. The other flange has been modified to
accept a pair of rectangular choke grooves and a radial channel for

the bhs port. Each choke groove is a quarter wave deep and spaced
a quarter wave from the main WR-15 waveguide. The choke was

evaluated separately, by measuring the insertion loss through the
main waveguide with an unmetallized 0:005-in Mylar gasket in
place. The loss measured less than 0.2 dB across the 55–63-GHz
band. A radial channel was next milled in the special flange to
accommodate the biae line and RF-blocking network. This channel

has a negligible effect on the insertion loss of the system.

The preliminary stepe in the design of the oversized microstrip

mixer included the selection of the optimum type of diode, and the
impedance matching of the monopole to this diode. Optimum

performance was obtained with preproduction samples of an ad-
vanced GaAs beam-lead Schottky-barrier diode. The diodes were

developed by the British General Electric Company [3], and are
expected to become commercially available in the near future,

Fig. 3illuetrates an advanced version of theoversized microstrip
mixer, in which the rnonopole has been shortened and moved off
axis to improve the impedance match. This mount also features a
shielded miniature (SMA) output connector, which accommo-
dates the high IF typically required in single-ended mixers. The
Mylar was replaced by Kapton, as the latter can tolerate higher

temperatures and, as such, is better suited tostandard metallization
and bonding techniques. With a forward bias of 0.6 V and 1.0 mW

of drive, the VSWR of the final design was 2.0 or better across the

band from 59t063 GHz. Itisbelieved that further optimization of
the shape and location of the monopole could result in still wider

bandwidths. (Alternatively, enhanced performhce across a narrow
band, through suitable termination of the image frequency [4], is
possible with a higher monopole Q.)

After asatisfactory impedance match had been obtained across a
4-GHz band, thepoise figure of the mixer was measured. Measure-
ments were performed by the standard Y-factor method with the
aid of a noise tube calibrated against the AIL millimeter hot load

[6]. An IF of 1.5 GHz was selected, w this frequency offers a good
compromise between the degradation introduced by LO noise and


